RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. FIRST SEMESTER (July – December) 2014 Mid-Semester Examination, September 2014

Date : 15/09/2014 Time : 11 am - 1 pm

MATHEMATICS (Honours)

Paper : I

Full Marks : 50

[5]

[Use a separate answer book for each group]

<u>Group – A</u>

(Answer any five questions)

- 1. Determine the number of (i) antisymmetric relations, (ii) equivalence relations on the set $\{1,2,3,4\}$ [5]
- 2. Let X be a nonempty set. A function $d: X \times X \to \mathbb{R}^+$ is defined to be a metric on X if

a)
$$d(x,y) = 0$$
 for $x, y \in X \Leftrightarrow x = y$,

b) $d(x,y) = d(y,x) \quad \forall x, y \in X$

and c) $d(x,z) \le d(x,y) + d(y,z) \forall x, y, z \in X$.

Check if the map $D: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}^+$ defined by $D(A, B) = |A\Delta B|$ is a metric on $\mathcal{P}(X)$. [5]

- 3. Show that the number of even permutations on a finite set (containing at least 2 elements) is equal to the number of odd permutations on it. [5]
- 4. Let A, B be nonempty sets. Recall that a function f: A→B is invertible iff ∃ a map g: B→A such that gof = id_A, fog = id_B.
 Prove that a function f: A→B is invertible iff f is both left-invertible and right-invertible. [5]
- 5. Show that there exists no rational number r such that $r^2 = 5$.
- 6. Find sup A and inf A if $A = \left\{ \frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N} \right\}$. [5]
- 7. a) Find all A ⊆ ℝ such-that A[°] = (A)[°].
 b) Let S ⊆ ℝ. Show that int S is the largest open set contained in S. [5]

8. Find A' if
$$A = \left\{ (-1)^n \left(1 + \frac{1}{n} \right) : n \in \mathbb{N} \right\}.$$
 [5]

<u>Group – B</u>

- 9. Answer any two questions :
 - a) Show that the equation of the line joining the feet of perpendiculars from the point (d,0) on the lines : $ax^2 + 2hxy + by^2 = 0$ is (a-b)x + 2hy + bd = 0. [6]
 - b) Find the polar equations of the directrices of the ellipse $\frac{\ell}{r} = 1 + e \cos \theta$. [6]
 - c) If g be a variable tangent to the conic $\frac{\ell}{r} = 1 e\cos\theta$, show that the locus of the foot of the perpendicular from the pole on g is the circle $r^2(e^2 1) + 2\ell er\cos\theta + \ell^2 = 0$. [6]
- 10. Answer <u>any one</u> :
 - a) Prove that the necessary and sufficient condition for Mdx + Ndy = 0 to be exact is $\frac{\partial M}{\partial v} = \frac{\partial N}{\partial x}$. [5]

b) Prove that if $Mx - Ny \neq 0$ then $\frac{1}{Mx - Ny}$ is an integrating factor of the equation Mdx + Ndy = 0where $M = yf_1(xy)$, $N = xf_2(xy)$. [5]

11. Answer **any two** :

- a) Solve: $(y^2 + 2x^2y)dx + (2x^3 xy)dy = 0$ [4]
- b) Find the general and singular solutions of $\sin\left(x\frac{dy}{dx}\right)\cos y = \cos\left(x\frac{dy}{dx}\right)\sin y + \frac{dy}{dx}$ [4]

c) Solve:
$$3x(1-x^2)y^2\frac{dy}{dx} + (2x^2-1)y^3 = ax^3$$
 [4]

_____ × _____